Sincere-Strategy Preference-Based Approval Voting Fully Resists Constructive Control and Broadly Resists Destructive Control

Gábor Erdélyi Markus Nowak Jörg Rothe

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Germany

COMSOC-08, Liverpool, September 2008

Outline

- Introduction
- Approval Voting and its Versions
 - Approval Voting (AV)
 - Sincere-Strategy Preference-Based Approval Voting (SP-AV)
- Results

Parts of this paper were presented at MFCS 2008.

Introduction

- Artificial systems:
 - Hybridization Fully resists control (Hemaspaandra, Hemaspaandra, Rothe - IJCAI 2007)

Introduction

- Artificial systems:
 - Hybridization Fully resists control (Hemaspaandra, Hemaspaandra, Rothe - IJCAI 2007)
- Natural systems:

```
Condorcet 3 \times R 4 \times I 7 \times V

Approval 4 \times R 9 \times I 9 \times V

Llull 14 \times R 0 \times I 8 \times V

Copeland 15 \times R 0 \times I 7 \times V

Plurality 16 \times R 0 \times I 6 \times V
```

Introduction

- Artificial systems:
 - Hybridization Fully resists control (Hemaspaandra, Hemaspaandra, Rothe - IJCAI 2007)
- Natural systems:

Condorcet
$$3 \times R$$
 $4 \times I$ $7 \times V$

Approval $4 \times R$ $9 \times I$ $9 \times V$

Liull $14 \times R$ $0 \times I$ $8 \times V$

Copeland $15 \times R$ $0 \times I$ $7 \times V$

Plurality $16 \times R$ $0 \times I$ $6 \times V$

Can we do better?

Voting Systems

- Set of candidates and voters:
 - $C = \{c_1, \ldots, c_m\}$
 - $V = \{v_1, \dots, v_n\}$
- Voter preferences over C can be represented as
 - preference lists (rankings)
 - approval/disapproval vectors
- Voting rule aggregates the preferences and outputs the set of winners
 - unique winner
 - nonunique winner

Approval Voting

- Introduced by Brams and Fishburn
- Each voter specifies his or her 0 1 approval vector:
 - 1 represents approval
 - 0 represents disapproval
- Ignores preference rankings
- The winners are the candidates with the highest score

Example for Approval Voting

Example

- Set of voters:
 - $V = \{v_1, \ldots, v_{10}\}$
- Set of candidates:
 - c_1 = chicken
 - $c_2 = fish$
 - $c_3 = pork$
 - c_4 = rump steak
 - $c_5 = \text{tofu}$

Example for Approval Voting

Example

Set of voters:

•
$$V = \{v_1, \ldots, v_{10}\}$$

Set of candidates:

- $c_1 = \text{chicken}$
- $c_2 = fish$
- $c_3 = pork$
- c_4 = rump steak
- $c_5 = \text{tofu}$

The votes:

$$v_1 = v_2 = 00010$$

•
$$v_3 = 00110$$

•
$$v_4 = 11110$$

$$v_5 = v_6 = v_7 = v_8 = 11011$$

•
$$v_9 = 01001$$

$$v_{10} = 00001$$

Example for Approval Voting

Example

The result of the voting:

•
$$score(c_1) = 5$$

•
$$score(c_2) = 6$$

•
$$score(c_3) = 2$$

•
$$score(c_4) = 8$$

•
$$score(c_5) = 6$$

The votes:

•
$$v_1 = v_2 = 00010$$

•
$$v_3 = 00110$$

•
$$v_4 = 11110$$

$$v_5 = v_6 = v_7 = v_8 = 11011$$

•
$$v_9 = 01001$$

•
$$v_{10} = 00001$$

Rules

- Proposed by Brams and Sanver
- Each voter has a preference ranking, a tie free linear ordering of all candidates:

$$c_4 > c_1 > c_3 > c_5 > c_2 > c_6$$

• Line between acceptable and inacceptable candidates:

$$c_4$$
 c_1 | c_3 c_5 c_2 c_6

• The winners are the candidates with the highest score

Notations

- The set of candidates S_ν that voter v approves of is an AV strategy
- The list of all strategies is an AV strategy profile

Conventions

- Admissibility:
 - v's most preferred candidate ∈ S_v
 - v's least preferred candidate ∉ S_v
- Sincerity: no gaps in the approval strategies
- Sincere strategy is always admissible for at least 2 candidates if ∅ ≠ S_V ≠ C

Example for SP-AV

Example

$$v_1 = v_2 = c_4 \mid c_1 \quad c_3 \quad c_5 \quad c_2$$

$$\bullet$$
 $v_3 = c_3 c_4 | c_2 c_5 c_1$

$$V_4 = c_3 c_1 c_2 c_4 | c_5$$

$$\bullet$$
 $v_5 = v_6 = c_5 c_4 c_1 c_2 | c_3$

$$\bullet$$
 $v_7 = v_8 = c_1 c_5 c_2 c_4 | c_3$

$$\bullet$$
 $v_9 = c_2 c_5 | c_1 c_3 c_4$

$$\bullet$$
 $v_{10} = c_5 \mid c_1 c_4 c_3 c_2$

Example for SP-AV

Example

$$\bullet$$
 $v_1 = v_2 = c_4 \mid c_1 c_3 c_5 c_2$

$$\bullet$$
 $v_3 = c_3 c_4 | c_2 c_5 c_1$

$$\bullet$$
 $v_4 = c_3 c_1 c_2 c_4 | c_5$

$$\bullet$$
 $v_5 = v_6 = c_5 c_4 c_1 c_2 | c_3$

$$\bullet$$
 $v_7 = v_8 = c_1 c_5 c_2 c_4 | c_3$

$$\bullet$$
 $v_9 = c_2 c_5 | c_1 c_3 c_4$

$$v_{10} = c_5 \mid c_1 c_4 c_3 c_2$$

The result of the voting:

•
$$score(c_1) = 5$$

•
$$score(c_2) = 6$$

•
$$score(c_3) = 2$$

•
$$score(c_4) = 8$$

•
$$score(c_5) = 6$$

Violations Against the Conventions

- Violations against admissible AV strategies in control via:
 - Deleting Candidates,
 - Partition of Candidates,
 - Partition of Voters.

Example

Nonvegetarian food:

$$v_1 = v_2 = c_4 \mid c_1 \quad c_3 \quad c_2$$

$$v_3 = c_3 c_4 | c_2 c_1$$

$$V_4 = c_3 c_1 c_2 c_4$$

$$\leftarrow$$

$$V_4 = c_3 c_1 c_2 c_4$$

$$V_5 = V_6 = c_4 c_1 c_2 | c_3$$

$$\bullet$$
 $v_7 = v_8 = c_1 c_2 c_4 | c_3$

$$\bullet$$
 $v_9 = c_2 | c_1 c_3 c_4$

$$v_{10} = c_1 \mid c_4 \mid c_3 \mid c_2$$

$$V_{10} = | c_1 c_4 c_3 c_2$$

Example

Nonvegetarian food:

$$\bullet$$
 $v_1 = v_2 = c_4 \mid c_1 c_3 c_2$

$$V_3 = c_3 c_4 | c_2 c_1$$

$$V_4 = c_3 c_1 c_2 c_4$$

$$\bullet$$
 $v_5 = v_6 = c_4 c_1 c_2 | c_3$

$$\bullet$$
 $v_7 = v_8 = c_1 c_2 c_4 | c_3$

$$\bullet$$
 $v_9 = c_2 | c_1 c_3 c_4$

$$v_{10} = c_1 \mid c_4 \mid c_3 \mid c_2$$

Result of (C_1, V) :

•
$$score(c_1) = 7$$

•
$$score(c_2) = 6$$

•
$$score(c_3) = 2$$

•
$$score(c_4) = 7$$

Example

$$\bullet$$
 $v_1 = v_2 = c_4 \mid c_1 c_5$

$$V_3 = c_4 \mid c_5 c_1$$

$$v_4 = c_1 c_4 | c_5$$

•
$$v_5 = v_6 = c_5 c_4 | c_1$$

$$v_5 - v_6 - c_5 c_4 \mid c$$

$$\bullet$$
 $v_7 = v_8 = c_1 c_5 | c_4$

$$v_9 = c_5 \mid c_1 c_4$$

$$v_{10} = c_5 \mid c_1 \mid c_4$$

$$v_5 = v_6 = c_5 c_4 c_1$$

$$v_7 = v_8 = c_1 c_5 c_4$$

Example

$$v_1 = v_2 = c_4 \mid c_1 \mid c_5$$

$$v_3 = c_4 \mid c_5 c_1$$

$$v_4 = c_1 c_4 | c_5$$

$$\bullet$$
 $v_5 = v_6 = c_5 c_4 | c_1$

$$\bullet$$
 $v_7 = v_8 = c_1 c_5 | c_4$

$$v_9 = c_5 \mid c_1 \quad c_4$$

$$v_{10} = c_5 \mid c_1 c_4$$

The result of the second stage:

•
$$score(c_1) = 3$$

•
$$score(c_4) = 6$$

•
$$score(c_5) = 6$$

Plurality and Approval

Theorem

	Plurality		AV	
Control by	Constr.	Destr.	Constr.	Destr.
Adding an Unlimited Number of Candidates	R	R	1	V
Adding a Limited Number of Candidates	R	R	1	V
Deleting Candidates	R	R	V	1
Partition of Candidates	TE: R	TE: R	TE: V	TE: I
	TP: R	TP: R	TP: I	TP: I
Run-off Partition of Candidates	TE: R	TE: R	TE: V	TE: I
	TP: R	TP: R	TP: I	TP: I
Adding Voters	V	V	R	V
Deleting Voters	V	V	R	V
Partition of Voters	TE: R	TE: R	TE: R	TE: V
	TP: V	TP: V	TP: R	TP: V

Results

Theorem

	SP-AV		AV		Plurality			
Control by	Constr.	Destr.	Constr.	Destr.	Constr.	Destr.		
Adding an Unlimited Number of Candidates	R	R	1	V	R	R		
Adding a Limited Number of Candidates	R	R	1	V	R	R		
Deleting Candidates	R	R	V	1	R	R		
Partition of Candidates	TE: R.	TE: R	TE: V	TE: I	TE: R	TE: R		
	TP: R	TP: R	TP: I	TP: I	TP: R	TP: R		
Run-off Partition of Candidates	TE: R	TE: R	TE: V	TE: I	TE: R	TE: R		
	TP: R	TP: R	TP: I	TP: I	TP: R	TP: R		
Adding Voters	R	٧	R	V	V	V		
Deleting Voters	R	٧	R	V	V	V		
Partition of Voters	TE: R	TE: V	TE: R	TE: V	TE: R	TE: R		
	TP: R	TP: R	TP: R	TP: V	TP: V	TP: V		

Proof Technique

- Resistancy results follow via reduction from Hitting Set and Exact Cover by 3-Sets
- Vulnerability results follow via polynomial time Algorithm
- Some results are straightforward modifications of results and constructions from Hemaspaandra, Hemaspaandra, Rothe - Anyone but him
- But some results require new constructions

Contrast

Table

Number of resistances, immunities, and vulnerabilities to our 22 control types.

Number of	Condorcet	Approval	Llull	Copeland	Plurality	SP-AV
resistances	3	4	14	15	16	19
immunities	4	9	0	0	0	0
vulnerabilities	7	9	8	7	6	3

Summary

- SP-AV offers:
 - Full resistance to constructive control
 - Full resistance to candidate control
 - More resistances than is currently known for any other natural voting system with a polynomial-time winner problem
 - Fewer vulnerabilities than is currently known for any other natural voting system with a polynomial-time winner problem

Thank you very much!