### A Qualitative Vickrey Auction

Paul Harrenstein<sup>1</sup> Tamás Máhr<sup>2</sup> Mathijs de Weerdt<sup>2</sup>

<sup>1</sup>Institut für Informatik Ludwig-Maximilians-Universität München

<sup>2</sup>Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology

Workshop on Computational Social Choice, 2008

## Vickrey versus Qualitative Vickrey

Vickrey's sealed-bid second-price single item auction

- bids are prices
- outcome: winner has highest bid, price of second-highest bid
- bidding private value is a dominant strategy

#### Qualitative Vickrey auction

- bids are alternatives
- outcome: winner has highest ranked bid, alternative at least as high as second-highest
- bidding highest acceptable alternative is a dominant strategy



## Motivating Example: Buy a Super-computer

Limited budget (e.g. from a project) to buy a super-computer

- Announce ranking of alternatives (including budget) to suppliers
- Request one (sealed) proposal from each supplier
- Select winner: supplier with most preferred proposal
- Select deal (by supplier): higher preferred than second-ranked proposal





#### Outline

- Definitions
  - Notation and Definitions
  - The Qualitative Vickrey Auction
  - Adequate Strategies
- Properties
  - Dominant Strategies
  - Pareto Efficiency
  - Other Properties
- Summary and Future Work
  - Summary
  - Future Work



## Definitions and Assumptions

#### Notation and Definitions

- An *outcome* is an alternative and a winner:  $(a, i) \in A \times N$ .
- Center's order over  $A \times N$  is given by a linear order  $\geq$ .
- Bidder i's preferences over  $A \times N$  are given by a weak order  $\succsim_i$ .

#### Assumptions

- Bidder *i* can only bid from  $A \times \{i\}$ .
- Bidder *i* is indifferent between outcomes where winner is not *i*.
- Assume each bidder has at least one acceptable outcome, where an outcome (a,i) is acceptable to i if  $(a,i) \succsim_i (x,j)$  for  $j \neq i$ .



### The Qualitative Vickrey Auction

The qualitative Vickrey auction follows the following protocol:

- **1** The order  $\geq$  of the center is publicly announced.
- **2** Each bidder *i* submits a sealed bid  $(a, i) \in A \times \{i\}$ .
- **3** The bidder  $i^*$  who submitted the bid ranked highest in  $\geq$  is the winner.
- The winner  $i^*$  may choose from  $A \times \{i^*\}$  any outcome ranked at least as high as second-highest bid in  $\geq$ .



# Example of a Qualitative Vickrey Auction

$$(a,1) > (a,2) > (a,3) > (b,1) > (b,2) > \cdots > (c,1) > \ldots > (d,3)$$



## Example of a Qualitative Vickrey Auction

$$(a,1) > (a,2) > (a,3) > (b,1) > (b,2) > \cdots > (c,1) > \ldots > (d,3)$$



### Adequate Strategies

A strategy for *i* is *adequate* if

- $\bullet$  *i* bids acceptable outcome ranked highest in  $\geq$ , and
- ② if i wins the auction, i selects outcome she prefers most (in  $\succsim_i$ ) from those ranked higher in  $\ge$  than the second-highest bid.



## Example of Using an Adequate Strategy

$$(a,1) > (a,2) > (a,3) > (b,1) > (b,2) > \cdots > (c,1) > \ldots > (d,3)$$

| $\succsim_1$                   | $\succsim_2$                   | ≿3                            |
|--------------------------------|--------------------------------|-------------------------------|
| (c,1)                          | (d,2)                          | (d,3)                         |
| (d,1)                          | (b,2)                          | $(x,i) \notin A \times \{3\}$ |
| $(x,i) \not\in A \times \{1\}$ | (a,2)                          | (a,3)                         |
| (b, 1)                         | $(x,i) \not\in A \times \{2\}$ | (c,3)                         |
| (a, 1)                         | (c,2)                          | (b,3)                         |



## Example of Using an Adequate Strategy

$$(a,1) > (a,2) > (a,3) > (b,1) > (b,2) > \cdots > (c,1) > \ldots > (d,3)$$

| $\succsim_1$                   | $\succsim_2$                   | ≿3                             |
|--------------------------------|--------------------------------|--------------------------------|
| (c,1)                          | (d,2)                          | (d,3)                          |
| (d,1)                          | (b,2)                          | $(x,i) \not\in A \times \{3\}$ |
| $(x,i) \not\in A \times \{1\}$ | (a,2)                          | (a,3)                          |
| (b, 1)                         | $(x,i) \not\in A \times \{2\}$ | (c,3)                          |
| (a,1)                          | (c,2)                          | (b,3)                          |



## Example of Using an Adequate Strategy

$$(a,1) > (a,2) > (a,3) > (b,1) > (b,2) > \cdots > (c,1) > \ldots > (d,3)$$

| $\succsim_1$                   | $\succsim_2$                   | ≿3                             |
|--------------------------------|--------------------------------|--------------------------------|
| (c,1)                          | (d,2)                          | (d,3)                          |
| (d,1)                          | (b,2)                          | $(x,i) \not\in A \times \{3\}$ |
| $(x,i) \not\in A \times \{1\}$ | (a,2)                          | (a,3)                          |
| (b, 1)                         | $(x,i) \not\in A \times \{2\}$ | (c,3)                          |
| (a,1)                          | (c,2)                          | (b,3)                          |



# Adequate Strategies are Dominant

#### Theorem

Adequate strategies are dominant.

#### Proof.

(sketch)

- Let (a,i) be acceptable outcome (to i) ranked highest in  $\geq$ .
- Let (a',j) be highest-ranked bid by  $j \neq i$ .
- Two cases:
  - (a',j) > (a,i): i should bid below (a',j) in  $\geq$ , because if i wins, she can only select unacceptable outcomes, and
  - **②** (a,i) > (a',j): i should bid above (a',j) in  $\geq$ , because then outcome can be highest in  $\succeq_i$  which is above (a',j).
- In both cases, optimal strategy for i is to bid (a, i).



## DSE is Not Strongly Pareto Efficient

$$(a,1) > (a,2) > (a,3) > (b,1) > (b,2) > \cdots > (c,1) > \ldots > (d,3)$$

Bidder 3 will win with outcome (a,3), while

- (d,3) is strictly higher preferred by bidder 3, and
- all other bidders are indifferent.



### Other Properties

#### The dominant strategy equilibrium is

- Weakly Pareto efficient: no outcome is *strictly* preferred by *all* bidders.
- Strongly Pareto efficient when center is also considered: other outcome is either worse for center, or for winner.
- Weakly monotonic: if a bidder moves the equilibrium outcome  $(a^*, i^*)$  up in its order, the outcome of the mechanism stays the same.



### Summary

- A class of auctions without money, similar to Vickrey's second-price auction
- A dominant strategy equilibrium that is
  - weakly Pareto efficient (but not strongly),
  - strongly Pareto efficient when center is also considered, and
  - weakly monotonic.
- In paper:
  - Escape Gibbard-Satterthwaite by restricting bidders' preferences (distinct acceptable outcomes and indifferent among non-winning)
  - Drop assumption that each bidder has an acceptable outcome



#### Future Work

- ullet Prove that the Vickrey auction with money is a special case (where  $\geq$  is the standard order over prices)
- Show relation to multi-attribute auctions
- Study other qualitative auctions (e.g. English, multi-unit, online)
- ullet Characterise instances of these mechanisms (parameterised by  $\geq$ )
- Find more interesting applications without money transfers (e.g. grids)

