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Preference functions (PFs)
• Input: vector/multiset of votes: (strict) rankings of m alternatives
• Output: nonempty set of strict rankings

– Multiple rankings necessary for tiebreaking
• Positional scoring rules assign a score to each position

– Plurality: 1 point for first place, 0 otherwise
– Borda: m-i points for ith place
– Rank alternatives by total score

• In case of ties, output all rankings that break the ties

• Kemeny: choose ranking(s) that maximize total # of 
agreements with votes
– Agreement = occasion where vote ranks some a above some b 

and ranking does the same
• STV (aka. IRV): place alternative with lowest plurality score 

at bottom of ranking, remove it from all votes, recalculate 
plurality scores, repeat
– Will have more to say about tiebreaking for STV later



Two views of voting
1. Voters’ preferences are idiosyncratic; only 

purpose is to find a compromise 
winner/ranking

2. There is some absolute sense in which 
some alternatives are better than others, 
independent of voters’ preferences; 
votes are noisy perceptions of alternatives’
true quality



A maximum likelihood model
a“correct” ranking

avote 1 avote 2 avote n…
conditional independence assumption:

votes are conditionally independent given correct outcome
P(v1, …, vn|c.r.) = P(v1|c.r.)P(v2|c.r.) … P(vn|c.r.)

• Goal: given votes, find maximum likelihood estimate of correct 
ranking: arg maxr P(v1|r)P(v2|r) … P(vn|r)
– This is a preference function!

• Noise model: P(v|r)
• Different noise model ↔ different maximum likelihood 

estimator/preference function
• Variants include: correct winner; no conditional independence 

[Conitzer & Sandholm UAI 2005] (this talk does not consider these)
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History
• Condorcet assumed noise model where voter ranks any 

two alternatives correctly with fixed probability p > 1/2, 
independently [Condorcet 1785]
– Gives cyclical rankings with some probability, but does not 

affect MLE approach
– Solved cases of 2 and 3 alternatives

• Two centuries pass…
• Young solved case of arbitrary number of alternatives

under the same model [Young 1995]

– Showed that it coincides with Kemeny [Kemeny 1959]

• Extensions to the case where p is allowed to vary with the 
distance between two alternatives in correct ranking [Drissi & 
Truchon 2002]

• For which common PFs does there exist some noise 
model such that that rule is the MLE PF? [Conitzer & Sandholm 
UAI 2005]

– Key trick: PF that is not consistent cannot be MLE PF



Simple ranking scoring functions 
(SRSFs)

• An SRSF is defined by a function s(v,r)
• Produces rankings arg maxr s(v1,r) + s(v2,r) + … + s(vn,r)

• Related to work by Zwicker [2008] on mean 
proximity rules
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Equivalence of MLE and SRSF

• Theorem: A neutral PF is an MLE if and only 
if it is an SRSF
– Not true without neutrality restriction



Equivalence of MLE and SRSF
• Theorem: A neutral PF is an MLE if and only if it is an 

SRSF.  Proof sketch:
• Lemmas: a neutral PF is an MLE (SRSF) if and only if it is an MLE 

(SRSF) for a neutral noise model (score function s)  (proofs omitted)
• Only if of theorem: given a neutral noise model P(v|r), 

arg maxr P(v1|r)P(v2|r) … P(vn|r) = 
arg maxr log(P(v1|r)P(v2|r) … P(vn|r)) = 
arg maxr log P(v1|r) + log P(v2|r) + … + log P(vn|r), 

so define s(v,r)=log P(v|r)
• If of theorem: given a neutral s(v,r), 

arg maxr s(v1,r) + s(v2,r) + … + s(vn,r) = 
arg maxr exp{s(v1,r) + s(v2,r) + … + s(vn,r)} = 
arg maxr exp{s(v1,r)}exp{s(v2,r)} … exp{s(vn,r)} =  
arg maxr (exp{s(v1,r)}/a)(exp{s(v2,r)}/a) … (exp{s(vn,r)}/a)

Here, a = ∑v in L(A)exp{s(v,r)} which, by neutrality, is the same for all r
So, define P(v|r) = exp{s(v,r)}/a



Not true without neutrality
• Consider the PF that always chooses {r0} 
• It is an SRSF: for all v, s(v,r0) = 1, s(v,r) = 0 otherwise
• It is not an MLE: 

Consider some r other than r0

We have ∑v in L(A) P(v|r) = 1 = ∑v in L(A) P(v|r0)
So there exists v such that P(v|r) ≥ P(v|r0)
So if v is the only vote, then r0 cannot be the unique 
winning ranking 



Example SRSFs
• Kemeny

– Almost immediate from definition
• Positional scoring functions

– Less trivial
– [Conitzer & Sandholm UAI 2005] gives a noise model which 

can be converted to scoring function s (actually, easier 
to define s directly)

• Also follow from [Zwicker 2008]



Extended ranking scoring functions 
(ERSFs)

• Defined by a (finite) sequence of SRSF functions s1, 
s2, …, sd

Score rankings according to s1,
Break ties among winning rankings by s2,
Break remaining ties by s3,
Etc.

• Any SRSF is also an ERSF (of depth 1)
• Proposition: For every ERSF and every natural 

number N, there exists an SRSF that agrees with 
ERSF whenever there are at most N votes
– So ERSFs are MLEs when the number of votes is 

limited



Up next: properties: 
SRSFs, ERSFs, 
consistency, and 

continuity

Analogous properties for social choice rules 
that score individual alternatives studied by 
Smith 73, Young 75, Myerson 95



ERSFs are consistent

• Proposition: ERSFs are consistent: If f(V1)∩ f(V2) 
≠ Ø then f(V1+V2) = f(V1)∩ f(V2)
– [Young and Levenglick 1978]
– Important note: rules that are consistent as a preference 

function are not necessarily consistent as a social 
choice function

• Corollary: (e.g.) Bucklin, Copeland, maximin, 
ranked pairs are not ERSFs (hence not SRSFs, and hence 
not MLEs)
– [Conitzer & Sandholm UAI 2005] contains examples where 

these PFs are not consistent (actually, in either sense)



SRSFs are continuous
• Proposition: SRSFs are continuous
• Proposition: some ERSFs are not 

continuous



SRSFs are continuous
• Anonymous PFs can be defined as functions on m!-

tuples of natural numbers (each number 
representing the occurrences of a particular vote)

• An anonymous PF is homogenous if multiplying the 
m!-tuple by a constant does not affect the outcome
– Homogenous PFs can be defined on m!-tuples of 

rational numbers
• An anonymous, homogenous PF is continuous

(really, upper hemicontinuous) if, for any sequence of m!-
tuples p1, p2, … with limit point p, and r in f(pi) for all 
i, we have r in f(p)

• Proposition: SRSFs are continuous
• Proposition: some ERSFs are not continuous



STV
• Is STV an SRSF? An ERSF?
• Turns out to depend on tiebreaking
• Proposition: There is an ERSF that coincides with STV on 

profiles without ties
• This defines a tiebreaking rule, though (apparently) not a 

very simple one
• Another tiebreaking rule: A ranking is among the winners if 

there is some way of breaking ties that results in this 
ranking
– “Parallel universes tiebreaking” STV (PUT-STV) (NP-hard!)

• Proposition: PUT-STV is the minimal continuous 
extension of STV to tied profiles

• Proposition: PUT-STV is not consistent
• Proposition: There is no SRSF that coincides with STV on 

profiles without ties
– Follows from previous two propositions + another lemma



Open questions
• For social choice functions, relationship among 

(simple/extended) positional scoring rules, continuity, 
consistency is well-understood

• Theorem [Smith 73, Young 75]:  An anonymous, neutral 
social choice function is 
– consistent iff it is an extended positional scoring function
– consistent and continuous iff it is a simple positional scoring 

function
• … also corresponds to MLE for “correct winner” [Conitzer & 

Sandholm UAI 2005] 

• Conjecture: analogous results hold for preference 
functions
– Does not seem to easily follow from Smith and Young (or 

Myerson 1995)



Conclusion
• Voting rules that are MLEs

– are more natural
– can be analyzed and modified based on their noise 

models
• Established equivalence with type of scoring 

functions, relations to consistency and 
continuity

• STV “almost” an MLE, depends on tiebreaking
• Open questions regarding consistency, 

continuity, and scoring functions
• Currently investigating the MLE approach in 

combinatorial voting domains
THANK YOU FOR YOUR ATTENTION!


