Nadja Betzler

ioint work with

Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond

> Friedrich-Schiller-Universität Iena University of Newcastle, Australia

2nd International Workshop on Computational Social Choice September 2008

Election

Election

Set of votes V, set of candidates C.

A vote is a ranking (total order) over all candidates.

Example: $C = \{a, b, c\}$

vote 1: a > b > c

vote 2: a > c > b

vote 3: b > c > a

How to aggregate the votes into a "consensus ranking"?

Average distance

Introduction

000000

KT-distance (between two votes v and w)

$$\mathsf{KT\text{-}dist}(v,w) = \sum_{\{c,d\}\subseteq C} d_{v,w}(c,d),$$

where $d_{v,w}(c,d)$ is 0 if v and w rank c and d in the same order, 1 otherwise.

Example:

$$v: a > b > c$$

 $w: c > a > b$

$$\mathsf{KT\text{-}dist}(v,w) = d_{v,w}(a,b) + d_{v,w}(a,c) + d_{v,w}(b,c)$$

= 0 + 1 + 1
= 2

Kemeny Consensus

Kemeny score of a ranking r

sum of KT-distances between r and all votes

Kemeny consensus r_{con} :

a ranking that minimizes the Kemeny score

```
\mathsf{KT}\text{-}\mathsf{dist}(r_{con}, v_1) = 0
       a > b > c
V1 :
```

$$v_2$$
: $a > c > b$ KT-dist $(r_{con}, v_2) = 1$ because of $\{b, c\}$

$$v_3:$$
 $b>c>a$ KT-dist $(r_{con},v_3)=2$ because of $\{a,b\}$ and $\{a,c\}$

$$r_{con}$$
: **a** > **b** > **c** Kemeny score: $0 + 1 + 2 = 3$

Decision problem + Motivation

Kemeny Score

Input: An election (V, C) and a positive integer k. Question: Is the Kemeny score of (V, C) at most k?

Applications:

- Ranking of web sites (meta search engine)
- Sport competitions
- Databases
- Voting systems

Average distance

Known results

Introduction

- KEMENY SCORE is NP-complete (even for 4 votes)
 [DWORK ET AL., WWW 2001]
- KEMENY WINNER is P_{\parallel}^{NP} -complete [E. Hemaspaandra et al., TCS 2005]

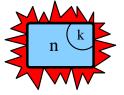
Algorithms:

- randomized factor 11/7-approximation [AILON ET AL., STOC 2005]
- factor 8/5-approximation
 [VAN ZUYLEN AND WILLIAMSON, WAOA 2007]
- PTAS [Kenyon-Mathieu and Schudy, STOC 2007]
- Heuristics; greedy, branch and bound [Davenport and Kalagnanam, AAAI 2004], [Conitzer et al. AAAI, 2006]

Parameterized Complexity

Given an NP-hard problem with input size n and a parameter k Basic idea: Confine the combinatorial explosion to k

instead of



Definition

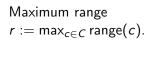
A problem of size n is called *fixed-parameter tractable* with respect to a parameter k if it can be solved exactly in $f(k) \cdot n^{O(1)}$ time.

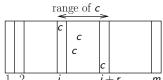
Parameterizations of Kemeny Score

Results mostly obtained from [Betzler et al., AAIM 2008]

	Kemeny Score
Number of votes <i>n</i> [Dwork et al. WWW 2001]	NP-c for $n = 4$
Number of candidates <i>m</i>	$O^*(2^m)$
Kemeny score k	$O^*(1.53^k)$
Maximum pairwise KT-distance d_{max}	$O^*((3d_{max}+1)!)$
Maximum range of candidate positions r	$O^*((3r+1)!)$

Maximum KT-distance $d_{max} := \max_{v,w \in V} KT$ -dist(v, w).





Average KT-distance

Definition

For an election (V, C) the average KT-distance d_a is defined as

$$d_a := rac{1}{n(n-1)} \cdot \sum_{\{u,v\} \in V, u
eq v} \mathsf{KT ext{-}dist}(u,v).$$

In the following, we show that KEMENY SCORE is fixed-parameter tractable with respect to the "average KT-distance".

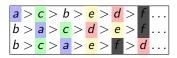
Complementarity of parameterizations

- Number of candidates $m(O^*(2^m))$
- Maximum range r of candidate positions in the input votes $(O^*(32^r))$
- Average distance of the input votes $(O^*(16^{d_a}))$

 $(m \geq r)$, but corresponding algorithm has a better running time)

Example 1: small range, large number of candidates and average distance

Example 2: small average distance, large number of candidates and range



$$a > b > c > d > e > f \dots$$

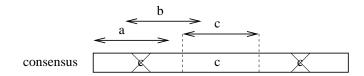
 $b > c > d > e > f > a \dots$
 $a > b > c > d > e > f \dots$

⇒ check size of parameter and then use appropriate strategy

Average distance d_a .

Crucial observation

In every Kemeny consensus every candidate can only assume a number of consecutive positions that is bounded by $2 \cdot d_a$.



Dynamic programming

making use of the fact that every candidate can be "forgotten" or "inserted" at a certain position.

Let the average position of a candidate c be $p_a(c)$.

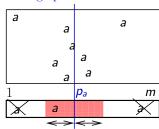
Lemma

Let d_a be the average KT-distance of an election (V, C). Then, in every optimal Kemeny consensus I, for every candidate $c \in C$ we have $p_a(c) - d_a < I(c) < p_a(c) + d_a$.

average position of **a**

 d_a

input votes



consensus

Crucial observation

Let the average position of a candidate c be $p_a(c)$.

Lemma

Let d_a be the average KT-distance of an election (V, C). Then, in every optimal Kemeny consensus I, for every candidate $c \in C$ we have $p_a(c) - d_a < l(c) < p_a(c) + d_a$.

Idea of proof:

- "The Kemeny score of (V, C) is smaller than $d_a \cdot |V|$." We show that one of the input votes has this Kemeny score.
- Contradiction: Assume a candidate has a position outside the given range. Then, we can show that the Kemeny score is greater than $d_a \cdot |V|$, a contradiction.

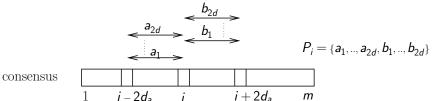
Number of candidates per position

For a position i, let P_i denote the set of candidates that can assume *i* in an optimal consensus.

Lemma

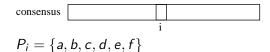
Let d_a be the average KT-distance of an election (V, C). For a position i, we have $|P_i| \leq 4 \cdot d_a$.

Proof: Position "range" of every candidate is at most $2 \cdot d_a$.



Every candidate of P_i must have a position smaller than $i + 2d_a$ and greater than $i-2d_a$.

Dynamic programming



Observation:

For any position i and a subset P_i of candidates that can assume i:

- One candidate of P_i must assume position i in a consensus.
- Every other candidate of P_i must be either left or right of i.

Dynamic programming table

Position i, a candidate $c \in P_i$, a subset of candidates $P'_i \subseteq P_i \setminus \{c\}$

Definition

 $T(i, c, P'_i) := \text{optimal partial Kemeny score if } c \text{ has position } i \text{ and } i$ all candidates of P'_i have positions smaller than i

$$P_i = \{a, b, c, d, e, f\}$$
consensus
$$P'_i = \{a, b\}$$
i
$$i$$

Computation of partial Kemeny scores:

- Overall Kemeny score can be decomposed (just a sum over all votes and pairs of candidates)
- Relative orders between c and all other candidates are already fixed

Running time

n votes m candidates

We have $|P_i| < 4d_a$, thus there are at most 2^{4d_a} subsets of P_i . \Rightarrow Table size is bounded by $16^{d_a} \cdot \text{poly}(n, m)$.

Theorem

KEMENY SCORE can be solved in $O(n^2 \cdot m \log m + 16^d \cdot (16d^2 \cdot m + 4d \cdot m^2 \log m \cdot n))$ time with average KT-distance d_a and $d := [d_a]$.

	Kemeny Score
Number of votes <i>n</i> [DWORK ET AL. WWW 2001] Kemeny score <i>k</i>	NP-c for $n = 4$ $O^*(1.53^k)$
Number of candidates m	$O^*(2^m)$
Maximum range of candidate positions r	$O^*(32^r)$
Average KT-distance d_a	$O^*(16^{d_a})$

- Average distance: investigate typical values
- Improve the running time for the parameterizations "average distance" and "maximim candidate range"
- Implementation
- Incomplete votes and ties:
 Extend the results as far as possible, investigate new parameterizations