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INTRODUCTION

I Classic result: Only rational choice can be rationalized as the
maximization process of an ordering.

I But what if rationality does not hold?
I To consider a wider notion of rationalization, by relaxing the

way in which the choice function is explained.
I Rationalization by multiple rationales (Kalai, Rubinstein, and

Spiegler 2002; KRS): behavior is rationalized through a
collection of linear orders. For every choice problem there is a
linear order that rationalizes it.

I It is as if the DM had in mind a partition of the set of choice
problems, and applies one rationale to each element of the
partition.
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RATIONALIZATION BY MULTIPLE RATIONALES

I Definition (CC, CF)

Given a set of elements X and a domain D ⊆ U , a map c : D → U
is a choice correspondence if for every A ∈ D, c(A) ⊆ A. If for
every A ∈ D, c(A) is a singleton, we say that c is a choice
function.

I Definition (RMR)

A K -tuple of complete preorders (�k)k=1,...,K on X is a
rationalization by multiple rationales (RMR) of choice
correspondence c if for every A ∈ D, the set of elements c(A) is
�k -maximal in A for some k .
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I Example 1:
X = {1, 2, 3}

U = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}}
D = U\{1, 3}
c({1, 2, 3}) = 1; c({1, 2}) = c({2, 3}) = 2

�1 �2

1 2
2 1
3 3

I There are multiple books of rationales that can rationalize a
given choice behavior. KRS propose to focus on those that
use the minimal number of rationales.
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OUR AIMS

Drawing on the tools of theoretical computer science, we study the
question of how complex it is to find the preference relations that
rationalize choice behavior. Unless stated, results apply both to CC
and CF.

I Our basic result shows that in the general case, finding a
minimal book is a difficult computational problem.

I Now, the question arises whether it is the conjunction of (i)
unstructured choice behavior and (ii) unrestricted choice
domain that leads to the computational hardness of the
problem of rationalization.



OUR AIMS

Drawing on the tools of theoretical computer science, we study the
question of how complex it is to find the preference relations that
rationalize choice behavior. Unless stated, results apply both to CC
and CF.

I Our basic result shows that in the general case, finding a
minimal book is a difficult computational problem.

I Now, the question arises whether it is the conjunction of (i)
unstructured choice behavior and (ii) unrestricted choice
domain that leads to the computational hardness of the
problem of rationalization.



OUR AIMS

Drawing on the tools of theoretical computer science, we study the
question of how complex it is to find the preference relations that
rationalize choice behavior. Unless stated, results apply both to CC
and CF.

I Our basic result shows that in the general case, finding a
minimal book is a difficult computational problem.

I Now, the question arises whether it is the conjunction of (i)
unstructured choice behavior and (ii) unrestricted choice
domain that leads to the computational hardness of the
problem of rationalization.



OUR AIMS

Drawing on the tools of theoretical computer science, we study the
question of how complex it is to find the preference relations that
rationalize choice behavior. Unless stated, results apply both to CC
and CF.

I Our basic result shows that in the general case, finding a
minimal book is a difficult computational problem.

I Now, the question arises whether it is the conjunction of (i)
unstructured choice behavior and (ii) unrestricted choice
domain that leads to the computational hardness of the
problem of rationalization.



OUR AIMS

I Restriction of choice domain. Universal domain. Under the
universal choice domain, the problem of finding a minimal
book is quasi-polynomially bounded.

I Restriction of choice behavior. The choice correspondence
satisfies the well-known consistency property known as the
weak axiom of revealed preference (WARP). In other words,
the minimal number of rationales is 1 with certainty. The
problem is polynomial.
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I The challenge is then to understand better the driving forces
of the complexity of rationalization, thus helping us to search
for specIfic algorithms that behave well under certain
circumstances.

I We will be able to draw a connection with a natural graph
theory problem.

I This is especially useful since there is a wealth of algorithms
for graph problems that may be used to solve the problem of
rationalization of certain choice structures.
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THE MOST GENERAL CASE

Rationalization of any c by Linear Orders in D (RLO-D):
Given a choice function c on D, can we find k ≤ K linear orders
that constitute a rationalization by multiple rationales of c?

Theorem
RLO-D is NP-complete.

Sketch of Proof of Theorem
We use the proof-by-reduction technique to prove that the problem
is NP-complete. That is, we show that it contains a known
NP-complete problem as a special case.
Partition into Cliques (PIC): Given a graph G = (V , E ), can the
vertices of G be partitioned into k ≤ K disjoint sets V1, V2, . . . , Vk

such that for 1 ≤ i ≤ k the subgraph induced by Vi is a complete
graph?
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RESTRICTION OF CHOICE BEHAVIORS

I c-Maximal Sets: A subset S ∈ D is said to be c-maximal if
for all T ∈ D, with S ⊂ T , it is the case that c(S) 6= c(T ).
Denote the family of c-maximal sets under the choice domain
D by MD

c .

I Weak Axiom of Revealed Preference (WARP): Let
A, B ∈ D and assume x , y ∈ A ∩ B; if x = c(A) then
y 6= c(B).

Theorem
Let the choice function c be a rational procedure on D. Then
|MD

c | ≤ |X | − 1 and the problem of finding the linear order � that
rationalizes c is polynomial.
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RESTRICTION OF CHOICE DOMAIN

Theorem
RLO-U is quasi-polynomially bounded.

Proof of Theorem We describe a naive algorithm and check the
order of magnitude of the operations needed.

This result remains an open question for the case of Choice
Correspondences (RCP-U).
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RATIONALIZATION AND GRAPH THEORY

Definition
Let A, B ∈ MD

c , A→ B if and only if c(A) ∈ B \ c(B).

A blocks B, in the sense that we cannot write c(A) � c(B) and
explain both sets.

(MD
c ,→) is a standard directed graph. In the case of Choice

Correspondences, a more complex structure is needed.

Cycle: The collection {At}nt=1 ∈ MD
c , n ≥ 2, is a cycle if A1 = An

and for every i ∈ {1, . . . , n − 1}, Ai → Ai+1.

Partition into DAGs A partition of MD
c {Vp}p=1,...,P is said to be

a Partition into DAGs if every class Vp is a DAG, i.e., it admits no
cycle. It is said to be minimal if any other Partition into DAGs has
at least P classes.
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EQUIVALENCE RESULT

Theorem
Let c be a choice function:

-If {�p}p=1,...,P is a minimal RMR, then there is a minimal
Partition into DAGs {Vp}p=1,...,P of MD

c where all the choice
problems explained by any rationale are grouped together.

-If {Vp}p=1,...,P is a minimal Partition into DAGs of MD
c , then

there is a minimal RMR {�p}p=1,...,P where all the choice problems
in the same equivalence class are explained by the same rationale.
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Conclusions

I In the case of single-valued choice functions, it is the
conjunction of unstructured choice and unrestricted domain
that drives the intractability result.

Under the universal
domain, the problem of finding a minimal book is
quasi-polynomially bounded. Under rational behavior, the
problem of finding a minimal book is polynomial.

I In the choice correspondences case, it may well be the case
that the difficulty in finding a minimal book is triggered by
choice behavior per se.

I Graph Theory has mainly focused on the relevance of the
Maximal DAG problem. This paper provides an intuitive
application of the Partition into DAGs problem. Literature?
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