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Abstract

This paper investigates the conditions un-
der which social signals (facial expres-
sions, postures, gazes, etc.), especially
non-verbal multimodal user appraisal, can
help to accelerate the learning capacity of
a Reinforcement Learning (RL) agent in
the dialogue management context. For this
purpose a potential-based shaping reward
method is used jointly with the Kalman
Temporal Differences (KTD) framework
so as to properly integrate the social as-
pects in an efficient optimization proce-
dure through social-based additional rein-
forcement signals. Besides its general in-
terest, this procedure could leverage sys-
tem’s development by allowing the de-
signer to teach its system through explicit
signals at its early stage of training. Exper-
iments carried out using the state-of-the-
art goal-oriented Hidden Information State
(HIS) dialogue management framework in
a simulation setup confirm the interest of
the proposed approach.

1 Introduction

Goal-oriented statistical Spoken Dialogue Sys-
tems (SDSs), or even more generally Multimodal
Dialogue Systems (MDSs), are the targets of this
work. These systems are designed to achieve a
task most often related to an information retrieval
problem in collaboration with a human user (e.g.
flight booking or hotel reservation services). The
fundamental characteristic of this kind of “human-
computer interface” is that the interaction between
the human and the artificial agent (e.g. computer,
robot, etc.) is mostly dominated by natural means
of human communication (e.g. speech, gazes, ges-
tures). The Dialogue Manager (DM) is the core

Fabrice Lefevre
LIA - University of Avignon
BP1228 - 84911 Avignon Cedex 9
Avignon, France

fabrice.lefevre@univ-avignon. fr

component of SDSs, in charge of the interaction’s
course. It should infer the best decision sequence
to fulfil the user goal. The dialogue management
problem has first been described as a Markov De-
cision Process (MDP) in (Levin et al., 1997) and
the Reinforcement Learning (RL) paradigm (Sut-
ton and Barto, 1998) is employed to determine an
optimal mapping between situations and actions,
the policy. In this scheme the DM can be seen
as an agent which has to interact with its environ-
ment (i.e. the user) in order to maximise some
expected cumulative discounted reward. In most
works the latter represents objective design crite-
ria based on task completion and overall system
efficiency. More recently, the MDP mathematical
framework scheme was extended to Partially Ob-
servable Markov Decision Process (POMDP) to
better cope with the inherent uncertainty on the in-
formation conveyed inside SDSs. This uncertainty
comes from the fact that available pieces of infor-
mation, collected from the user during consecu-
tive dialogue turns, are extracted by error-prone
input modules (e.g. speech recognizer, natural lan-
guage understanding module, gesture recognizer,
etc.). RL approaches were also successfully ap-
plied in this context (Young et al., 2010; Thomson
and Young, 2010).

When developing a new SDS from scratch, in-
domain dialogue corpora are seldom readily avail-
able and collecting such data is both time con-
suming and expensive (e.g. Wizard-of-Oz, pro-
totyping). That is why, the capacity of a RL al-
gorithm to learn online while interacting with the
user is highly valuable. However, common ap-
proaches assume that an acceptable sub-optimal
initial policy has been found by either exploit-
ing user simulation methods (Schatzmann et al.,
2005), or by hand (handcrafted dialogue manager)
before any trials are made with real users. Re-
cent works attempted to address this problem by
using sample-efficient algorithms in order to limit



the need of such a “bootstrap step”. Thereby, TD-
based SARSA with Gaussian Process (Gasi¢ et
al., 2010), incremental sparse Bayesian method
(Lee and Eskenazi, 2012), or KTD (Daubigney
et al., 2012) are among the most promising ap-
proaches. Anyhow, lowering the length of the
warm-up learning phase, when the system can
not interact with real users due to a high level
of exploration and poor performance, is still an
open problem when such systems are to be de-
clined to real-world applications. One solution
can be to introduce some initial expert knowledge
(Williams, 2008) or to find ways to collect more
hints from the environment which will accelerate
the policy learning. For that purpose, we claim
that social signals (Vinciarelli et al., 2009) can
be employed as additional reinforcement signals
(i.e. rewards) to refine and accelerate the pol-
icy optimization of a learning agent. Indeed, de-
tecting social signals and social behaviours (e.g.
emotions, turn taking attempts, politeness, nod-
dings, postures, gazes, etc.) influence our ev-
eryday life behaviour in many ways (Custers and
Aarts, 2005). Furthermore, by the fact that they
can be gathered all along the dialogue, they may
introduce a more granular view of the real qual-
ity of an interaction. Despite that some attempts
to use emotion with RL have already been made
(Broekens and Haazebroek, 2007), little has been
done in the goal-oriented DM problem context.
In this paper we propose a potential-based shap-
ing reward method (Ng et al., 1999) to integrate
these social aspects in combination with the use
of the unified KTD framework with regards to its
interesting properties (Geist and Pietquin, 2010;
Daubigney et al., 2012). This preliminary study
is carried out in a simulation setting where social
reinforcement signals are simulated based on dia-
logue progress objective features representing the
positiveness/negativeness of a particular situation.
In this context, a better control over the experi-
mental conditions, such as the simulated concept
error rate level, is possible and comparison be-
tween several techniques is facilitated.

The remainder of the paper is organised as
follows. In Section 2 some backgrounds on
MDP/POMDP, RL paradigm, DM problem and
KTD method are given. Then, in Section 3 social
reward principle is detailed. Section 4 is dedicated
to present the experimental setup. Then the fol-
lowing section details and comments on the differ-

ent results obtained. Section 6 discusses on some
considerations relevant to the use of social rein-
forcement, before concluding in Section 7 with
some perspectives.

2 Background

This section briefly reviews the Markov Decision
Processes (MDP) and the RL paradigm. Then, the
casting of the DM problem as an MDP (POMDP)
is presented. Finally, the KTD method is concisely
introduced.

2.1 Markov Decision Processes

A tuple {S, A, T, R,~} forms a MDP, where S is
the state space (discrete, continuous or mixed), A
is the discrete action space, 7' is a set of Marko-
vian transition probabilities, R is the immediate
reward function, R : S x A x S — R and
v € [0,1] the discount factor (discounting long
term rewards). The environment evolves at each
time step ¢ to a state s; and the agent picks an
action a; according to a policy mapping states to
actions, m : S — A. Then state changes to
s¢4+1 according to the Markovian transition prob-
ability s;41 ~ T(.|s,ay) and, following this,
the agent received a reward r, = R(s, a, S¢+1)
from the environment. The overall problem of
MDP is to derive an optimal policy maximising
the reward expectation. Typically the averaged
discounted sum over a potentially infinite horizon
is used, > ;7 ytry. Thus, for a given policy and
start state s, this quantity is called the value func-
tion: V™ (s) = E[Y 507 'rt|so = s,m] € R,
V* corresponds to the value function of any op-
timal policy 7*. The Q-function may be defined
as an alternative to the value function. It adds
a degree of freedom on the first selected action,
Q7 (s,a) = B[} 507'rtls0 = s,a0 = a,7] €
RS¥A - As well as V*, Q* corresponds to the
action-value function of any optimal policy 7*. If
it is known, an optimal policy can be directly com-
puted by being greedy according to Q* , 7*(s) =
arg max, Q*(s,a)Vs € S.

2.2 Dialogue Management as a POMDP

Dialogue management problem has first been de-
scribed in (Levin et al., 1997) as a Markov Deci-
sion Process to determine an optimal mapping be-
tween situations and actions. The POMDP frame-
work (Kaelbling et al., 1998), as a generalization
of the fully-observable MDP, maintains a belief



distribution b(s) over user states, assuming the
true one is unobservable. Thereby, POMDP ex-
plicitly handles parts of the inherent uncertainty
of the DM problem (e.g. word error rate, con-
cept error rate). A POMDP policy maps the belief
state space into the action space. That is why, the
optimal policy can be understood as the solution
of a continuous space MDP. In practice, POMDP
problems are intractable to solve exactly due to
the curse of dimensionality (i.e. belief state/action
spaces). Among other techniques, the HIS model
(Young et al., 2010) circumvents the RL scaling
problem by organising the belief space into parti-
tions, grouping states sharing the same probability,
and then mapping the full belief space (partitions)
into a much reduced summary space where RL al-
gorithms work reasonably well.

Although variants have been proposed and
tested, e.g. (Pinault and Lefevre, 2011), HIS
remains a reference. However, the choice of a
Monte Carlo Control RL algorithm (Sutton and
Barto, 1998) is still questioned and recent studies
show the interest of considering sample-efficient
algorithms for the DM problem (Gasi¢ et al.,
2010; Daubigney et al., 2012). More especially
(Daubigney et al., 2012) showed that KTD frame-
work offers a unified framework able to cope
with all DM required properties: it is sample-
efficient, it allows on-policy/off-policy learning
through two algorithms (respectively KTD-Q and
KTD-SARSA) which can both perform online
and offline learning, it provides ways to deal
with the “exploration/exploitation” dilemma us-
ing uncertainty on value estimate, it allows value
tracking, and it supports linear and non-linear
parametrisation. Furthermore, KTD algorithms
were favourably compared to different state-of-
the-art algorithms able to deal with one single
property at once, such as Q-learning, LSPI or GP-
SARSA.

2.3 The KTD Framework

The Kalman Temporal Differences (KTD) frame-
work (Geist and Pietquin, 2010) is derived from
the well-known Kalman filter algorithm (Kalman,
1960) aiming at inferring some hidden variables
from related past observations and applied to
the estimation of the temporal differences for
the action-value function optimisation. In this
framework, a parametric representation of the Q-
function is chosen: Qp = 07 ¢(s,a), where the

feature vector ¢(s,a) is a set of n basis functions
to be designed by the practitioner and § € R”
the parameter vector to be learnt. Notice that just
the very basic explanations are recalled here, for
further details please refer to (Geist and Pietquin,
2010; Daubigney et al., 2012). The components
of the parameter vector § are the hidden variables
which are modelled as a random vector. Such
parameter vector is considered to evolve follow-
ing a random walk though this evolution equation:
0; = 0;,_1 + vy, with v; a white noise of covari-
ance matrix F,,. The latter allows to take into ac-
count the possible non-stationarity of the function.
The observations correspond to the environment
rewards which are linked to the hidden param-
eter vector through one of the sampled Bellman
equations g¢(6;) depending on the RL scheme em-
ployed (i.e. evaluation for on-policy or optimality
for off-policy learning):

Qet(% a) — WQet (8t+1,a1+1)
(evaluation)

Qo,(st; ar) — ymax, Qg, (St+1,a)
(optimality)

g¢(0y) =

Rewards are supposed to follow the observation
equation: 7, = ¢¢(6;) + ny where a white noise
n; with covariance matrix P, is also considered.
Two algorithms can be defined: KTD-SARSA
which denotes the use of the sampled evaluation
Bellman equation and KTD-Q, the use of the sam-
pled optimality one.

3 Social Reinforcement

In this section a rather simple definition of social
reward is given followed by a mathematical for-
malisation of such a reward. Then, a method to
simulate social signal is described.

3.1 Definition and formalisation

Social signal is a generic term which encompasses
all the behavioural cues which can be encountered
during an interaction with a human (e.g. blinks,
smiles, crossed arms, laughter, nodding and the
like). Social RL consists hence in exploiting these
cues in order to guide the learning process. How-
ever, the agent can use this information in mul-
tiple ways: as reinforcement, as additional infor-
mation integrated into the user state or as meta-
parameter (e.g. in an exploration/exploitation
scheme). Moreover, one may also think of using



emotion in the system response (emotional agent)
and thus, make use of this information so as to im-
prove its own social behaviour.

This work focuses on extracting social rewards
based on positive and negative social signals emit-
ted by the user and use them as additional re-
wards (or punishments). At each dialogue turn,
a social reward may be perceived by the system.
In this scenario a social signal can be seen as
a user behaviour attesting its own judgement on
the state evolution. Ergo, the social reward cor-
responds to the associated positiveness or neg-
ativeness of this signal represented as a signed
real value. In that purpose we propose to con-
sider the social reward function as a shaping re-
ward function. The memoryless shaping reward
function, which is one of the most general shap-
ing pattern, is adopted here. So, the considered
reward function is the sum of the basic environ-
ment reward function R.,, (objective) and the
new social one Rg,.iq; (Subjective). The result-
ing transformed MDP M " is defined by the tuple
(S, A, T, 7, R/) where R’ is is the reward function
defined as: R/(St, ag, St+1) = Rem,(st, Qg, St+1) +
Rsocial(st; at, 8t+1) where Rsocial tSXAXS —
R is a bounded real-valued function called here
the social-shaping reward function. Since the sys-
tem is learning a policy for M " in the idea of
using it in M, the question at hand is: what
form of social-shaping reward function Rgciai
can guarantee that the optimal policy in M " will
be optimal in M? In the case where no fur-
ther knowledge of 7" and R dynamics is avail-
able (no expert), a potential-based shaping reward
leave (near-)optimal policies unchanged (Ng et al.,
1999). Thereby, the potential-based shaping re-
ward function is adopted for R4, cOrrespond-
ing to function F' in Ng et al.’s paper, and can be
defined as follows:

Ryocial(st,a, 5¢41) = y¥(se41) — (s¢) (1)

where v is a potential function, here computed us-
ing a heuristic score based on the social signal.

3.2 Social agenda-based simulation

3.2.1 Goal and agenda-based simulation

As indicated before, the social rewards are simu-
lated in this study. We used the agenda-based user
simulator presented in (Schatzmann et al., 20006)
wherein the user is simulated at the intentional se-
mantic level (i.e. dialogue act level). This ap-
proach factors the user state into an agenda A and

[ type=bar

Co = drinks=beer

| area=east

[ name=

Ro = addr=

| phone=

Sysy Hello, how may I help you ?

[ inform(type=bar)
inform(drinks=beer)
inform(area=east)

Ay = request(name)

request(addr)
request(phone)

L byeO i

Usry I'm looking for a nice bar serving beer

Sysa Ok, a wine bar. What part of town do
you have in mind ?

[ negate(drinks=beer) ]
inform(area=east)

A, _ request(name)

2 - request(addr)
request(phone)

L byeO i

Usrg No, beer please !

Syss3 A bar serving beer, correct ?

[ affirm()
inform(area=east)

A _ request(name)

3 - request(addr)
request(phone)

L byeO

Usrs Yes something in the east
part of town please !

Sysy There is no bar serving beer in the east
part of town. But the Kings Shilling, near
the Castle, is a very nice bar serving beer.

_ type=bar

Ca - [ drinks=beer ]

name=Kings Shilling

Ry = addr=Castle Loop

phone=

A _ request(phone)

‘4 B bye(

Usry Ok, That is just the way it is. What's
the phone number ?

Syss Could you please rephrase that ?

As _ request(phone)

° B bye()

Usrs What’s the phone number ?!

Syse The number is 728-64-32.

name=Kings Shilling

Re = addr=Castle Loop

phone=728-64-32

Ag = [ byo ]

Usrg Thanks, goodbye!

Figure 1: Sample dialogue and its corresponding
agenda sequence

agoal G: S = (A,G), where G = (C,R). The
goal (G ensures that the simulated user reacts in an
appropriate, consistent and goal-oriented manner.
It consists of a set of constraints C' specifying the
required properties that the system should satisfy
(they are the objects of the negotiation) and a set
of requests R which represent the desired pieces
of information (e.g. address, phone number, avail-
able schedules). The agenda A is a stack-like
structure containing the pending user acts that are
deemed necessary to elicit the information speci-
fied in the goal. For further details on this simu-
lation method please refer to both (Schatzmann et
al., 2006) and (Keizer et al., 2010).

Figure 1 illustrates how the simulation works
and how tracking both the agenda and the goal
evolution can serve to detect some situations when
social signals are prone to be generated. For in-
stance, in Ag, the presence of a negate act at the



top of the agenda means that a user constraint has
been violated (here drinks=beer). So, itis a
negative cue. In the same way, the affirm act
in A3 underlines a positive situation. That is why,
the nature of the top dialogue act of the agenda can
give an insight into the positiveness or the nega-
tiveness of the user state evolution.

3.2.2 Social cues

Table 1 presents some simple positive and negative
cues extracted from the agenda and goal structures
in the user simulator during dialogue simulations.
Each of them is weighted in order to give more
or less emphasis on specific features. Although
a continuous scale is possible, a five-point agree-
ment scale (Likert scale) is adopted here for ¢ with
regard to the way subjective measures are gathered
in PARADISE (Walker et al., 1997). Each level is
associated with a representative real number asso-
ciated with an agreement scale, from strongly neg-
ative (——) to strongly positive (++). So, after
a normalisation step the sum of all the simulated
social features gives an overall score C's, which is
rescaled on a five-point Likert scale using a thresh-
old &. Thus, at each time step ¢, a “potential-like”
social reward is computed using Eq 1 and v func-
tion:

—1 7Zf Cs < _g (__)
05 Lif —£<C<0 (-)
P(s) = 0 ,ifCs=0 (neutral)
05 ,if0<Cy<E  (4)
1 ,if Cs>¢ (++)

The process of social reinforcement reward com-
putation can be decomposed into two steps. First,
the gathering of positive and negative social cues
from the factored user state. Second, the social
reward estimation using the potential-based social
reward function. An example of such a process
is summarised in Table 2. The first column rep-
resents the analysed user state s; (i.e. the corre-
sponding agenda A; and goal G; in Fig. 1). The
second and the third columns are respectively the
lists of positive and negative cues which have been
detected (using the id from Tab. 1) and their asso-
ciated value in brackets. For example, in the first
row and third column, cue 2 corresponds to the
number of items in the agenda and the value 6 is
extracted from As, minus sign indicates negative-
ness of the cue. The fourth column corresponds
to the ¢ value (i.e. the Likert score). It is com-
puted applying some weights on the detected cue

Positive Cues
1 Positive top dialogue 1
act type (e.g. affirm,

Negative Cues
Negative top dialogue
act type (negate,

confirm) deny, etc.)
2 Number of slots filled | 2 Agenda size
3 Partial completion flag | 3 Dialogue length

4 Final completion flag 4 Top agenda act contains

already transmitted item

Table 1: List of positive and negative cues col-
lected from agenda and goal

s¢ | Positive cues | Negative cues | ¥(s:) | Rsocial
S3 1(1) 2(-6), 3(-4) 0.5 0.45
S4 2(2/3) 3(1) 2(-2) 3(-5) 1 '

Table 2: Social reward computation example

values. As an illustration, for the negative cue
3, 1/30 is chosen as weight because the maxi-
mum number of turns allowed by the system is 30.
Consequently, 1/30 can be viewed as a normal-
isation value. It is important to notice that such
weights have been determined following some ex-
pert intuitions. They have been chosen to corre-
spond to an average user appraisal of the dialogue
progress. In (Ferreira and Lefévre, 2013), dif-
ferent user profiles are designed by varying these
weights to study to what extent social signals can
help user adaptation capacities of a learning agent.
The last column shows the resulting social reward
applying Eq. 1 with v = 0.95. The positive score
0.45 denotes a quite favourable evolution between
s3 and s4. To compete with the environment re-
ward the social reward can be rescaled using an
exponent. In real applications social cues could be
elicited using several multimodal social detectors
(e.g emotion face tracking, gesture classification,
social keyword spotting). These latters may pro-
duce a list of detector-specific positive and neg-
atives cues. For instance, the face tracker may
produce a cue dedicating to smile detection which
value is the probability of its inner model thereby
consisting in a positive cue, likewise the defini-
tion of two lists of negative/positive keywords may
help to produce two polarized cues from their de-
tection in the ASR results associated with their
posterior probabilities. Then, the same mecanism
of a weighted interpolation could be used to infer
¥(s) from the valued cues output by the various
detectors.

4 Experimental Setup

First, the HIS-based Dialogue System is briefly
described. Then, some details on experimental
conditions are given.



4.1 Townlnfo Dialogue System

The TownlInfo Dialogue System (Young et al.,
2010) is a HIS-based dialogue system for the
tourist information domain, related to a virtual
town. The TowInfo system has already been tested
with real users in (Schatzmann et al., 2006), and
in a more recent and matured version, called Cam-
Info (Cambridge tourist information), in (Gasi¢ et
al., 2010). In order to deal with large state and ac-
tion space the system maintains a set of partitions
which represent the overall belief state. Both the
latter and the action space are mapped into more
reduced summary spaces where RL algorithms are
tractable. The summary state space is the com-
pound of two continuous values (the two-first top
partitions probabilities) and three discrete values
(last user act type and a partition and a history sta-
tus). The summary action space contains 11 ac-
tions (e.g. inform, confirm). The environment re-
wards penalised each dialogue turn by -1 and at
the end of a dialogue the DM is rewarded a +20
bonus if the goal is reached, nil otherwise.

4.2 Experimental details

To assess the performance of introducing social
cues as a reinforcement signal, the online ver-
sion of the off-policy KTD-Q algorithm (noted
KTD-Q BASELINE) is employed as our base-
line due to its high performance in the condi-
tions at hand (Daubigney et al., 2012). The Q-
function is parametrised using linear-based Radial
Basis Function (RBF) networks, one per action,
as described in (Daubigney et al., 2012) and the
Bonus-Greedy scheme (Daubigney et al., 2011) is
adopted, with 8 = 1000 and 3y = 100. The dis-
count factor -y is set to 0.95 in all experiments. By
default, the user simulator is set to interact with
the DM at a 10% concept error rate. The weight
coefficient of the overall social reward is set to 4
and £ = 0.3, likewise all other individual cues are
weighted manually. All the results are averaged
over 50 independent training under online RL con-
ditions and are presented in terms of mean dis-
counted cumulative rewards with respect to both
the number of training dialogues (i.e. samples) or
different CER levels. The associated standard de-
viations are added to all the results. The authors
consider that the average cumulative environment
rewards can be sufficient metric to compare the
different approaches. This is explained by the fact
that in the environment reward function the suc-

Average cumulative rewards

KTD-Q BASELINE

- KTD-Q SOCIAL

KTD-Q SOCIAL-NEG

- KTD-Q SOCIAL-POS
KTD-Q SOCIAL-RANDOM

%DSEF

T T T T
100 200 300 400

Number of training dialogues
Figure 2: Results of 4 different configurations of
the social-shaped KTD-Q algorithm compared to
KTD-Q baseline during the learning of the policy
(controlled case)

cess (full user goal completion) is rewarded by a
+20 bonus and failure and elapsed time (turn) re-
spectively punished by a 0 and -1. For comparison
purposes all the experiments with a social reward
presented in our plots are given in terms of the en-
vironment reward, Ry, only.

5 Results

This section presents the results obtained using the
agenda-based user simulator described in Section
3.2.

5.1 Online policy using social reinforcement
learning

In this section the benefits of adding social rein-
forcement signals for optimizing the DM policy
are evaluated considering several social reinforce-
ment configurations which take into account dif-
ferent kind of cues for the social reward computa-
tion. The classic approach noted KTD-Q SOCIAL
considers both the negative and the positive social
cues, as described in Section 3.2.2.

Results are shown in Figure 2 in terms of cu-
mulative discounted environment rewards gath-
ered during the learning stage of the policy (con-
trolled case) when exploration is possible. For
these curves, each point is an average of the 50
independent learning performance using a sliding
window of 100 point width. Only the first 500
dialogues are considered here because we want
to focus on the early stage of training for which
system performance is critical. We can observe



that KTD-Q SOCIAL slightly outperforms KTD-
Q BASELINE in terms of both the final learned
performance, which is better of about 0.5 turn on
average, and the learning time to achieve a simi-
lar performance level, which is reduced. For ex-
ample, the performance obtained performing 200
dialogues with KTD-Q BASLINE algorithm are
reached at about 100 dialogues using KTD-Q SO-
CIAL. Furthermore, a comparison between three
other kinds of configuration of the simulated social
signal is also made. The first (KTD-Q SOCIAL-
NEG) and the second (KTD-Q SOCIAL-POS)
configurations are respectively using only the neg-
ative or positive social cues. The third configura-
tion is a randomized social signal generator (KTD-
Q SOCIAL RANDOM). As expected, KTD-Q
SOCIAL-RANDOM is the worst, followed by
KTD-Q SOCIAL-POS, KTD-Q BASELINE and
KTD-Q SOCIAL-NEG. KTD-Q SOCIAL which
combines both positive and negative cues still ob-
tains the best results. All configurations (except
KTD-Q SOCIAL-RANDOM) are rather close if
we consider the confidence radius of their results.
However an important point is that even in the
case of random social reinforcement, the potential-
based technique ensures that convergence to the
near-optimal policy is still preserved. From this
experiment it seems that the convergence is better
guided by negative information which is an inter-
esting finding considering that negative emotions
might be easier to emit and detect in a real setup.

5.2 Online policy in noisy conditions

Eventually we intend to evaluate the impact of
noise on the proposed optimization procedure.
Noise robustness is studied in terms of CER, En-
vironment and Social Reward Error Rates, noted
respectively ERER, SRER. Although the previous
experiment has shown encouraging results when
social reinforcement is considered, it should be
kept in mind that in the previous conditions so-
cial signals are perfectly perceived by the learning
agent. In a more realistic setup like user trials such
signals, due to their inherent complexity (e.g. mul-
timodal aspects, context-dependent interpretation)
cannot be perfectly observed. This difficulty is in-
troduced in the simulation by means of an artificial
SRER. At a given rate the social cues are randomly
modified to the inverse of what they should be. In
the same way, when online learning is adopted the
user should mark the overall dialogue in terms of
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Figure 3: Results of baseline and social-shaped
KTD-Q algorithms in different noise conditions
(no control)

task completion (objective metric). But, as shown
in (Gasié et al., 2010), the feedback given by a real
user can be erroneous. This will be reflected by
the ERER in our experiments. At a certain rate
the final evaluation of dialogue success (correct
or not) is inverted. Wrong feedbacks can be ex-
plained by the subjectivity of the task. Although
the goal is achieved any inconsistent behaviour of
the system during the dialogue can drive the user
to penalise the system at the end, but also by the
fact that a trial user is not really committed to the
task, if the system fails there is no consequence
for her or if the system asks for some constraint
release the user has no personal rationale to guide
her behaviour. In any case, the quality of the re-
ward function is crucial for the RL algorithms as
the speed of convergence to the optimal policy re-
lies on it. In addition, the presence of high CER
level also has a negative influence when this ad-
ditional difficulty is present from the beginning of
the learning (no progressive degradation).

Here, 7 methods are compared: KTD-Q
BASELINE and KTD-Q BASELINE-10ERER,
KTD-Q SOCIAL, KTD-Q SOCIAL-10ERER,
KTD-Q SOCIAL-10SRER and KTD-Q SOCIAL-
10ERER-10SRER. The 10XER mean that the cor-
responding error rate X is set to 10%. Results are
shown in Figure 3 in terms of cumulative rewards
with respect to different CER levels. For these
curves, each point is an average made over the re-
sults obtained using 50 policies learned with 400
dialogues and then tested with 1000 dialogues.
In the latter test setup, the next action is cho-



Use social | SRER Rewards Success rate
no - 10.24 (£0.76) | 91.14 (£1.58)
yes 0 11.77 (+0.38) | 93.42 (+0.80)
yes 10 11.75 (£0.43) | 93.73 (£0.58)
yes 20 11.28 (+0.45) | 92.53 (£0.88)
yes 30 10.80 (£0.42) | 91.68 (£1.10)
yes 40 10.67 (+0.43) | 91.33 (£1.01)
yes 50 10.06 (£0.71) | 89.34 (£3.70)

Table 3: Results of KTD-Q algorithm at 20% CER
and 10 % ERER using different SRER levels (no
control)

sen greedily with respect to the learnt Q-function
(no exploration). Considering only the KTD-
Q BASELINE and KTD-Q-BASELINE-10ERER
the influence of CER and ERER can be easily
identified. Thus, as the ERER and the CER in-
crease the overall performance decreases. Nev-
ertheless, in all conditions the use of a social re-
inforcement has a positive impact on the perfor-
mance of the KTD-Q algorithm. Thus, social rein-
forcement improves the ability to defer the impact
of noise in terms of both CER and ERER. One
of the reasons for this is that social rewards are
gathered all along the dialogue and offer a gran-
ular form of reward function. So, in case of the
user giving an erroneous final reward, collected
positive and negative social rewards can counter-
balance this mistake (as an hint of the overall
user satisfaction). Furthermore, in case of high
CER, social rewards can favour or penalize a sys-
tem local behaviour despite the overall task failure
(or success). However, the benefit of social rein-
forcement tends to decrease as the SRER raises.
Thereby, in order to study the impact of SRER
alone, Table 3 is populated with the results ob-
tained with different SRER levels at 20 % CER
and 10 % ERER, both corresponding to realistic
values for field trials. Above 30% SRER, taking
into account social signals seems to be unneces-
sary or even disadvantageous. Actually, even if the
results obtained with 40% SRER are slightly better
than those obtained with the baseline, they do not
converge as quickly (e.g. considering 200 train-
ing dialogues the baseline outperforms this social
version). It is worth noting that ERER and SRER
are simulated with no specific prior assumption.
Indeed a rather simple random error approach is
used. In more a sophisticated framework, such er-
rors could be learnt from data.

6 Discussions

In this “proof of concept” study a simulation setup
has been adopted, but undeniably real user trials

are required to validate the suggested claims pre-
sented all along. Mechanisms to extract correctly
social signals through multimodal cues from real
user have to be envisaged as for instance what
is done in the INTERSPEECH Computational
Paralinguistics Challenge (Schuller et al., 2012).
Even if the capacity of these methods remains
highly imperfect if these cues are gathered in an
unconstrained and implicit manner (Vinciarelli et
al., 2009), the experiments in Section 5.2 show
that we can evaluate them with a certain level of
imprecision without jeopardizing the merits of the
proposed method. Furthermore, we assume that
this problem can be simplified if we consider an
interaction with a cooperative and rational “seed
user” (e.g. a system designer), which employs a
limited set of non-verbal cues (e.g. head gesture,
tone) in order to accelerate the learning process.
The use of social rewards allows a more granular
view of the reward function rather than a binary
judgement at the end of the episode. So, it serves
as a more specific way to avoid or strengthen some
local system behaviours. Thereby, when sample-
efficient algorithms are considered the approach
can be viewed as a way to avoid the need for a
user simulator by using 100-200 interactions with
a seed user to bootstrap the system performance.
Such setup can be assimilated to active learning
like what is done in (Doshi and Roy, 2008) and
thus linked to imitation-based (Price and Boutilier,
2003) or inverse approaches to RL as in (Chan-
dramohan et al., 2011).

7 Conclusion

This paper has described a method by which so-
cial based reinforcement learning can be used to
train a dialogue policy from scratch in just a few
hundred dialogues and that improves the base-
line performance in terms of rapidity of conver-
gence. The approach also shows better robust-
ness to noisy conditions in terms of semantic in-
put error rate and environment reward error rate.
The presented method also has interesting proper-
ties that guarantee the optimality when social sig-
nals are merged into an additional reinforcement
learning signal using an amenable potential-based
shaping reward function to introduce the detected
social cues as additional reinforcement signals. In
the present work the social signals were simulated
from an agenda-based user simulator and thus real
user trials are still needed to uphold our claims.
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